2020

MATHEMATICS — HONOURS

Paper: DSE-A-1

(Industrial Mathematics)

Full Marks: 65

as far as practicable.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words

1. Choose the correct answer with proper justification / explanation for each of the multiple choice question given below: (For each question, one mark for each correct answer and one mark for justification):

give	J11 (JC10	٠٠ .	(1 01	cacii	ques	11011,	one	mark	101	cacii	Correc	t answe	i and	one	mark	. 101 j	ustili		×10
(a)	In	the	СТ	scan.	, we	use	bean	ns to	detec	et the	sus	ected	broken	bone	locat	ions	withir	the	medi	um.

- (i) Hard X-ray (ii) Soft X-ray
 - (iii) Electron (iv) γ-ray.
- (b) Differential equation known as Beer's law is an(i) ordinary 2nd order linear differential equation
 - (ii) ordinary 2nd order nonlinear differential equation
 - (iii) ordinary 1st order linear differential equation
 - (iv) ordinary 1st order nonlinear differential equation.
- (c) The definition of a periodic function, is given by a function which
 - (i) has a period $T = 2\pi$
- (ii) satisfied f(t+T) = f(t)
- (iii) satisfied f(t+T) + f(t) = 0
- (iv) has a period $T = \pi$.
- (d) A signal x(t) has a Fourier Transform $X(\omega)$. If x(t) is real and odd Function of t, then $X(\omega)$ is
 - (i) a real and even function of ω
 - (ii) an imaginary and odd function of ω
 - (iii) an imaginary and even function of ω
 - (iv) a real and odd function of ω .
- (e) A line $\mathcal{L}_{t,\theta} = \{(t\cos\theta s\sin\theta, t\sin\theta + s\cos\theta) : -\infty < s < \infty\}$ is perpendicular to the unit vector **n**. Then
 - (i) $\mathbf{n} = (\cos\theta, \sin\theta)$

(ii) $\mathbf{n} = (-\cos\theta, \sin\theta)$

(iii) $\mathbf{n} = (\cos\theta, -\sin\theta)$

(iv) $\mathbf{n} = (-\cos\theta, -\sin\theta)$.

Please Turn Over

- (f) The value of the integral $\int_{0}^{\infty} e^{-Ax^2} dx$ is
 - (i) $\frac{\pi}{A}$

(ii) $\sqrt{\frac{\pi}{4}}$

(iii) $\frac{1}{4}$

- (iv) $\frac{1}{\sqrt{4}}$.
- (g) If $\delta(x)$ be a delta function, such that $\int_{0}^{\infty} \delta(x)dx = 1$, then the Fourier transform of $\delta(x)$ is
 - (i) 1
- (ii) $\frac{1}{\delta(1)}$ (iii) $\delta(1)$ (iv) $\sqrt{\delta(1)}$.
- (h) If the 2×2 matrix X satisfies the equation $X \begin{pmatrix} 4 & 7 \\ 5 & 9 \end{pmatrix} = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$, then $X = \begin{pmatrix} 1 & 3 \\ 2 & 1 \end{pmatrix}$

- (i) $\begin{pmatrix} -6 & 4 \\ 13 & -10 \end{pmatrix}$ (ii) $\begin{pmatrix} -6 & 5 \\ 13 & -10 \end{pmatrix}$ (iii) $\begin{pmatrix} -6 & 4 \\ 12 & -10 \end{pmatrix}$ (iv) $\begin{pmatrix} -6 & 4 \\ 13 & -1 \end{pmatrix}$.

5

2+3

- (i) If $\Re f(t,\theta)$ denotes the Radon transform of f, which one of the following is true?
 - (i) $\Re(\alpha f + \beta g) = \alpha^2 \Re f + \beta^2 \Re g$
 - (ii) $\Re(\alpha f + \beta g) = \alpha \Re f + \beta \Re g$
 - (iii) $\Re(\alpha f + \beta g) = (\alpha 1)\Re f + (\beta 1)\Re g$ (iv) $\Re(\alpha f + \beta g) = \Re f + \Re g$.
- (j) If f is continuous on the real line, $\int_{-\infty}^{\infty} |f(x)| dx < \infty$ and \mathcal{F} denotes the Fourier transform of f, then
 - (i) $\mathcal{F}^{-1}(\mathcal{F}f)(x) = f^{-1}(x) \forall x$
- (ii) $\mathcal{F}^{-1}(\mathcal{F}f)(x) = f^2(x) \ \forall \ x$
 - (iii) $\mathcal{F}^{-1}(\mathcal{F}f)(x) = 2 f(x) \ \forall x$
- (iv) $\mathcal{F}^{-1}(\mathcal{F}f)(x) = f(x) \ \forall x$.

Unit - I

- 2. Answer any two questions:
 - (a) In CT scan which kind of X-ray is used and why? Explain with suitable example.

(i) Let $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3 + 1$. Find $(f^{-1})'(28)$.

(ii) Find all complex numbers z such that |z| = 1 and $|z^2 + \overline{z}^2| = 1$.

- (c) If A be a real matrix, then prove that all the eigenvalues A^TA are non-negative real numbers and the corresponding eigenvectors are orthogonal.
- (d) Solve the differential equation $x^2 \frac{d^2 y}{dx^2} + x \frac{dy}{dx} y = x^2 e^x$.

Unit - II

3. Answer any two questions:

5×2

- (a) What do you mean by an inverse problem of a mathematical problem? Explain it with an example.
- (b) Write down the inverse problem of the direct problem: Compute the eigenvalues of the given matrix A + D, where A being a real symmetric matrix of order $n \times n$ and D is a $n \times n$ diagonal matrix.
- (c) Find the eigenvalues and the corresponding eigenvectors of the matrix $A = \begin{pmatrix} 1 & -1 & 0 \\ 1 & 2 & -1 \\ 3 & 2 & -2 \end{pmatrix}$.
- (d) Solve the differential equation, $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$.

Unit - III

4. Answer any one question:

5×1

(a) State Beer's law on X-ray beam. Write its differential equation form. Establish the result

$$\int_{x_0}^{x_1} A(x)dx = \ln\left(\frac{I_0}{I_1}\right)$$

where A(x) is the attenuation coefficient function and I(x) is the intensity of the X-ray beam.

(b) An X-ray beam A(x), propagates in a medium is defined by

$$A(x) = \begin{cases} 1 - |x|, & \text{if } |x| \le 1, \\ 0, & \text{if } |x| > 1 \end{cases}.$$

Find the intensity I(x) of this beam, with the initial condition I(-1) = 1.

Unit - IV

5. Answer any one question:

 5×1

(a) Find the Random transform of the function

$$f(x,y) = \begin{cases} 1 - \sqrt{x^2 + y^2}, & \text{if } x^2 + y^2 \le 1 \\ 0 & \text{if } x^2 + y^2 > 1 \end{cases} \text{ on a line } \mathcal{L}_{t,\theta}.$$

(b) Write a short note on Shepp-Logan Mathematical phantom.

Please Turn Over

(a)	Write a short note on CT scan within 500 words.
(b)	Describe an algorithm of CT scan machine.
(c)	Find the Fourier transformation of the function $(ax^2 + bx + c)e^{-dx^2}$, $-\infty < x < \infty$, where $a, b, c, d > 0$.
(d)	If f be a continuous functions, such that $\int_{-\infty}^{\infty} f(x) dx < \infty$, then prove that $\mathcal{F}^{-1}(\mathcal{F}f)(x) = f(x)$ for all
x, v	where $\mathcal{F}f$ and $\mathcal{F}^{-1}f$ denote respectively the Fourier and inverse Fourier transform of f .

(4)

Unit - V

Unit - VI

2+3

5×2

5

(a) Define back projection. Prove that the back projection is a linear transformation.

(b) Give an example of back projection in the context of medical imaging.

T(5th Sm.)-Mathematics-H/DSE-A-1/CBCS

6. Answer *any one* question :

7. Answer any two questions: