B.Sc. Part-III (1+1+1 Sys) General Examination, 2021

PHSG Paper-IVB

Full Marks-50 Time-2hrs

MODULE-I

- (a) Write down the Algorithm for a program to sort an array of numbers in ascending order.
 OR
 - (b) Write down the Algorithm for a program to perform addition of two square matrices. 15
- 2. Answer any 5 questions:

5x2

- a. Which type of language is C?
- b. What is a compiler?
- c. How many Keywords (reserve words) are in C?
- d. What is a Constant and types of constants in C?
- e. What is the output of the below code snippet?

```
#include<stdio.h>

main()
{
   for()printf("Hello");
}
```

- A Infinite loop
- B Prints "Hello" once.
- C No output
- D Compile error
 - f. What is the output of the following program?

```
#include<stdio.h>
main()
{
   int i = 1;
   while(i++<=5);
      printf("%d ",i++);
}</pre>
```

- A 4
- B 6
- C 26
- D 24
 - g. What is the output of the following statement?

```
#include<stdio.h>
main()
{
    printf("%d", !0<2);
}</pre>
```

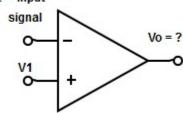
- A 0
- B 1
- C False

MODULE -II

(a) Draw the circuit diagrams for fabrication of an OPAMP as an inverting amplifier. Write down the working formula for the same.

OR

- 1. (b) Draw the circuit diagrams for fabrication of an OPAMP as a differential amplifier. Write down the working formula for the same.
- 2. Answer any five questions:


5x2

- a) A differential amplifier
 - 1. is a part of an Op-amp
 - 2. has one input and one output
 - 3. has two outputs
 - 4. answers (1) and (2)
- b) Of the values listed, the most realistic value for open-loop voltage gain of an OP-amp is
 - 1. 1
 - 2. 2000
 - 3. 80 dB
 - 4. 100,000
- c) For an Op-amp with negative feedback, the output is
 - 1. equal to the input
 - 2. increased
 - 3. fed back to the inverting input
 - 4. fed back to the non-inverting input
- d) A certain noninverting amplifier has R_i of 1 k Ω and R_f of 100 k Ω . The closed-loop voltage gain is

.....

- 1. 100,000
- 2. 1000
- 3. 101
- 4. 100
- e) The Op-amp can amplify
 - 1. a.c. signals only
 - 2. d.c. signals only
 - 3. both a.c. and d.c. signals
 - 4. neither d.c. nor a.c. signals
- f) Determine the output from the following circuit

V2 = input

- 1. 180° in phase with input signal
- 2. 180° out of phase with input signal
- 3. Same as that of input signal
- 4. Output signal cannot be determined
- g) Find the output voltage of an ideal op-amp. If V₁ and V₂ are the two input voltages
 - 1. $V_0 = V_1 V_2$
 - 2. $V_0 = A \times (V_1 V_2)$
 - 3. $V_0 = A \times (V_1 + V_2)$
 - 4. $V_0 = V_1 \times V_2$